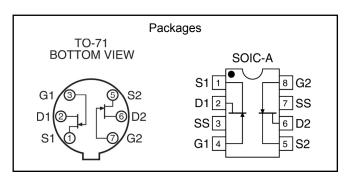
LINEAR SYSTEMS

LSK389 ULTRA LOW NOISE MONOLITHIC DUAL N-CHANNEL JFET

Linear Systems replaces discontinued Toshiba 2SK389 with LSK389

The 2SK389 / LSK389 is a monolithic matched dual JFET on a single chip

Why use On-Chip Dual JFET instead of 2 single JFETS?	FEATURES				
	ULTRA LOW NOISE	e _n = 0.9nV/√Hz (typ)			
Save Cost	TIGHT MATCHING	V _{GS1-2} = 20mV max			
2SK389 / LSK389 removes significant cost for test screening time	HIGH BREAKDOWN VOLTAGE	BV _{GSS} = 40V max			
needed to match lbss on 2 individual JFETS and offers ZERO yield loss.	HIGH GAIN	Y _{fs} = 20mS (typ)			
	LOW CAPACITANCE 25pF ty				
	IMPROVED SECOND SOURCE REPLACEMENT FOR 2SK389				
Improve Performance	ABSOLUTE MAXIMUM RATINGS ¹				
2SK389 / LSK389 On-Chip lbss matching gives closest possible synchronous electrical performance and also offers better matched performance when the chip is subjected to temperature.	@ 25 °C (unless otherwise stated)				
	Maximum Temperatures				
	Storage Temperature	-65 to +150 °C			
	Operating Junction Temperature	-55 to +135 °C			
2SK389 / LSK389 Applications:	Maximum Power Dissipation				
End audio microphone, Audio Amplifier and audio effects box	Continuous Power Dissipation @ +125 °C	; 400mW			
Instrumentation-input stages of various instruments The acoustic sensor market –sonoboys / antisubmarine, military personnel and vehicle detectors, sonar makers. Radiation detectors.	Maximum Currents				
	Gate Forward Current $I_{G(F)} = 10$				
	Maximum Voltages				
	Gate to Source	$V_{GSS} = 40V$			
	Gate to Drain	$V_{GDS} = 40V$			


MATCHING CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNIT	CONDITIONS
$\left V_{GS1}-V_{GS2}\right $	Differential Gate to Source Cutoff Voltage			20	mV	V_{DS} = 10V, I_D = 1mA
IDSS1 IDSS2	Gate to Source Saturation Current Ratio	0.9			-	V _{DS} = 10V, V _{GS} = 0V

ELECTRICAL CHARACTERISTICS @ 25 °C (unless otherwise stated)

SYMBOL	CHARACTERISTIC		MIN	TYP	MAX	UNITS	CONDITIONS
BV_{GSS}	Gate to Source Breakdown Voltage		40			V	$V_{DS} = 0$, $I_{D} = 100 \mu A$
$V_{\text{GS}(\text{OFF})}$	Gate to Source Pinch-off Voltage		0.15		2	V	V_{DS} = 10V, I_{D} = 0.1µA
	Drain to Source Saturation LS	LSK389A	2.6		6.5	mA	V _{DS} = 10V, V _{GS} = 0
I _{DSS}		LSK389B	6		12		
		LSK389C	10		20		
I _{GSS}	Gate to Source Leakage Current				200	pА	V_{GS} = -30V, V_{DS} = 0
Y _{fs}	Full Conduction Transconductance		8	20		mS	V_{DS} = 10V, V_{GS} = 0, I_{DSS} = 3mA, f = 1kHz
en	Noise Voltage			0.9	1.9	nV/√Hz	V _{DS} = 10V, I _D = 2mA, <i>f</i> = 1kHz, NBW = 1Hz
en	Noise Voltage			2.5	4	nV/√Hz	V _{DS} = 10V, I _D = 2mA, <i>f</i> = 10Hz, NBW = 1Hz
C _{ISS}	Common Source Input Capacitance			25		pF	V _{DS} = 10V, V _{GS} = 0, <i>f</i> = 1MHz,
C _{RSS}	Common Source Reverse Transfer Cap.			5.5		pF	V_{DG} = 10V, I_{D} = 0, f = 1MHz,

Available Packages: 2SK389 / LSK389 in SOIC-8 Lead 2SK389 / LSK389 in Thru-hole TO-71 6 Lead 2SK389 / LSK389 Toshiba footprint, SO8 / TO-71 with socket adaptor 2SK389 / LSK389 available as bare die 2SK389 / LSK389 available as wafer form Please contact Micross for package and die dimensions

